Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel

نویسندگان

  • Z. Adabavazeh
  • W. S. Hwang
  • Y. H. Su
چکیده

Intra-granular Acicular Ferrite (IAF), as one of the most well-known desirable microstructure of ferrite with a chaotic crystallographic orientation, can not only refine the microstructure and retard the propagation of cleavage crack but also provide excellent combination of strength and toughness in steel. The effect of adding cerium on microstructure and controlling proper cerium-based inclusions in order to improve properties in low-carbon commercial steel (SS400) were investigated. The type of inclusions can be controlled by changing S/O ratio and Ce content. Without Ce modification, MnS is a dominate inclusion. After adding Ce, the stable inclusion phases change from AlCeO3 to Ce2O2S. The optimum amount of cerium, 0.0235 wt.%, lead in proper grain refinement and formation of cerium oxide, oxy-sulfide and sulfide inclusions. Having a high amount of cerium results in increasing the number of inclusions significantly as a result it cannot be effective enough and the inclusions will act like barriers for others. It is found that the inclusions with a size of about 4∼7 μm can serve as heterogeneous nucleation sites for AF formation. Thermodynamic calculations have been applied to predict the inclusion formation in this molten steel as well, which show a good agreement with experimental one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Aluminum on Microstructure and Thickness of Galvanized Layers on Low Carbon silicon-Free Steel

In hot dip galvanizing, several parameters such as chemical composition of coating bath, immersion time and surface roughness of specimens could affect microstructure and properties of coating. In this article, the effect of aluminum content, immersion time and surface roughness on structure and properties of alloy layers have been investigated. Specimens of low carbon silicon-free steel with d...

متن کامل

Failure Investigation of Hydrogen Blistering on Low-strength Carbon Steel

The current study assesses the root causes of hydrogen blisters on low strength carbon steel equipment. For this purpose, some experiments including hardness test, non-destructive test (NDT), metallography, and fractograpghy are conducted. The microstructure of two blisters is assessed by means of optical microscopy and scanning electron microscopy (SEM). The microstructural studies show that t...

متن کامل

Evaluation of the Melted Zone Microstructure in the Interface of the Dissimilar Weld between A335 Low Alloy Steel and ER309L Filler Metal by Gas Tungsten Arc Welding

In the present study, the microstructure and mechanical properties of the dissimilar welding between ASTM A335 low alloy steel and ER309L austenitic stainless steel were investigated using the gas tungsten arc welding process. The welding of dissimilar materials between ASTM A335 low alloy steel and ER309L austenitic stainless steel was found to have a significant effect on the microstructure w...

متن کامل

Processing of Fine-Grained DP300/600 Dual Phase Steel from St12 Structural Steel by the Thermo-Mechanical Processing of Cold Rolling and Intercritical Annealing

The effect of microstructural refinement and intercritical annealing on the mechanical properties and work-hardening response of a low carbon St12 steel was studied. It was revealed that intercritical annealing of the ferritic-pearlitic sheet results in the formation of a coarse-grained DP microstructure with discrete martensite islands normally formed in place of pearlitic colonies, which resu...

متن کامل

The Effect of Siliconizing and Borosiliconizing Processes on Microstructure and Morphology of Carbon Steel Surface Layers

A study for optimizing of siliconizing and borosiliconizing processes on carbon steels has been carried out. The process parameters, i.e, time and powder mixture, were considered for optimization of the case depth, surface quality and the hardness profile. Time and temperature of the processes were 4 hr and 950˚C, respectively. Powder mixture in siliconizing process was 2.5% ferrosilicon, 2.5%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017